Using CommonKADS Method to Build Prototype System in Medical Insurance Fraud Detection
نویسندگان
چکیده
At present, the false claim cases related to insurance fraud emerge endlessly. In respect of frequent fraud cases of social insurance undertaken by government organizations, the inspection procedure usually relies on experts’ experience for verification and experienced personnel in charge of checking. However, due to heavy work load insufficient manpower and lack of experience, the ratio of miscarriages of justice is very high, which leads to improper settlement of claims and the waste of social resources. In this paper, we used rule technology to improve the above inefficiency. We employ a knowledge engineering methodology to analyze problems and construct knowledge modesl, including the domain schema and rules. We implement the knowledge model along with the existing database applications. The benefits generated by the research are: (1) establishing a knowledge system with expertise reasoning to solve the review problems of massive cases, (2) significantly reducing the large labor cost and consumed time of the existing reviewing system, and (3) improving the application level of traditional database in the expert reasoning system.
منابع مشابه
Fast Unsupervised Automobile Insurance Fraud Detection Based on Spectral Ranking of Anomalies
Collecting insurance fraud samples is costly and if performed manually is very time consuming. This issue suggests usage of unsupervised models. One of the accurate methods in this regards is Spectral Ranking of Anomalies (SRA) that is shown to work better than other methods for auto insurance fraud detection specifically. However, this approach is not scalable to large samples and is not appro...
متن کاملImproving Fraud and Abuse Detection in General Physician Claims: A Data Mining Study
Background We aimed to identify the indicators of healthcare fraud and abuse in general physicians’ drug prescription claims, and to identify a subset of general physicians that were more likely to have committed fraud and abuse. Methods We applied data mining approach to a major health insurance organization dataset of private sector general physicians’ prescription claims. It involved 5 ste...
متن کاملCredit Card Fraud Detection using Data mining and Statistical Methods
Due to today’s advancement in technology and businesses, fraud detection has become a critical component of financial transactions. Considering vast amounts of data in large datasets, it becomes more difficult to detect fraud transactions manually. In this research, we propose a combined method using both data mining and statistical tasks, utilizing feature selection, resampling and cost-...
متن کاملFDiBC: A Novel Fraud Detection Method in Bank Club based on Sliding Time and Scores Window
One of the recent strategies for increasing the customer’s loyalty in banking industry is the use of customers’ club system. In this system, customers receive scores on the basis of financial and club activities they are performing, and due to the achieved points, they get credits from the bank. In addition, by the advent of new technologies, fraud is growing in banking domain as well. Therefor...
متن کاملA Medical Claim Fraud/Abuse Detection System based on Data Mining: A Case Study in Chile
This paper describes an effective medical claim fraud/abuse detection system based on data mining used by a Chilean private health insurance company. Fraud and abuse in medical claims have become a major concern within health insurance companies in Chile the last years due to the increasing losses in revenues. Processing medical claims is an exhausting manual task carried out by a few medical e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- JNW
دوره 9 شماره
صفحات -
تاریخ انتشار 2014